Civil Service Reforms: Evidence from U.S. Police Departments

Arianna Ornaghi

July 2, 2019

ONLINE APPENDIX

Online Appendix A - Tables

Sample		pre-tre	atment			post-tre	atment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
I C' D'	-0.310	-0.195	-0.056	-0.228	-0.575***	-0.450**	-0.381**	-0.567**
Log Crime Rate	(0.199)	(0.170)	(0.164)	(0.231)	(0.222)	(0.187)	(0.166)	(0.226)
Clusters	80	101	123	62	89	113	137	88
Observations	5803	7403	8919	4433	8897	11233	13609	8786
Bandwidth	750	1000	1250	623	750	1000	1250	735
Lag Droparty Crima Data	-0.295	-0.180	-0.034	-0.219	-0.585***	-0.459**	-0.391**	-0.616***
Log Property Crime Rate	(0.190)	(0.162)	(0.158)	(0.218)	(0.213)	(0.180)	(0.160)	(0.229)
Clusters	80	101	123	62	89	113	137	72
Observations	5707	7292	8780	4374	8881	11205	13577	7259
Bandwidth	750	1000	1250	621	750	1000	1250	630
Log Violent Crime Rate	0.102	0.017	0.061	0.299	0.079	0.086	0.114	0.091
Log violent Crime Rate	(0.335)	(0.294)	(0.263)	(0.362)	(0.405)	(0.327)	(0.298)	(0.419)
Clusters	65	88	109	38	89	113	137	79
Observations	944	1165	1448	551	3022	3766	4391	2736
Bandwidth	750	1000	1250	483	750	1000	1250	690
Property Crime Clearance Rate	0.034	0.030	0.034	0.046	0.018	0.030	0.032	0.008
Toperty Chine Clearance Kate	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Clusters	80	101	122	55	89	113	137	76
Observations	4285	5516	6588	2902	8772	11064	13416	7605
Bandwidth	750	1000	1250	555	750	1000	1250	662
Violent Crime Clearance Rate	-0.090	-0.077	-0.065	-0.100	0.110**	0.100**	0.081*	0.069
violent ennie Clearance Kale	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Clusters	62	84	105	51	89	113	137	70
Observations	812	1021	1261	666	2978	3711	4327	2385
Bandwidth	750	1000	1250	663	750	1000	1250	614

Online Appendix Table 1: Effect on Crime and Clearance Rates, Robustness to Dropping Outliers

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables robustness to restricting the sample to dropping outliers. It presents RD estimates on crime rates and clearance rates for pre-treatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.

Sample		pre-tre	atment			post-trea	atment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Log Crime Rate	-0.337*	-0.256*	-0.083	-0.170	-0.601***	-0.490***	-0.415**	-0.605**
Log Clime Rate	(0.182)	(0.155)	(0.150)	(0.206)	(0.217)	(0.184)	(0.163)	(0.235)
Clusters	80	101	123	60	89	113	137	70
Observations	5811	7413	8929	4275	8906	11242	13623	7107
Bandwidth	750	1000	1250	598	750	1000	1250	621
L Draw orter Crime - Data	-0.318*	-0.239	-0.060	-0.296	-0.613***	-0.501***	-0.426***	-0.584***
Log Property Crime Rate	(0.174)	(0.148)	(0.145)	(0.183)	(0.210)	(0.178)	(0.158)	(0.212)
Clusters	80	101	123	65	89	113	137	87
Observations	5715	7302	8790	4602	8891	11215	13589	8668
Bandwidth	750	1000	1250	635	750	1000	1250	728
Lee Wielert Crime Dete	0.023	-0.111	0.009	0.035	0.032	0.020	0.056	0.038
Log Violent Crime Rate	(0.321)	(0.288)	(0.249)	(0.339)	(0.364)	(0.298)	(0.271)	(0.378)
Clusters	65	88	109	47	89	113	137	78
Observations	950	1171	1454	706	3036	3780	4407	2720
Bandwidth	750	1000	1250	599	750	1000	1250	679

Online Appendix Table 2: Effect on Crime Rates, Robustness to Using Smoothed UCR Population

Notes: *** p<0.01, ** p<0.1. The tables shows robustenss to using UCR population to define crime rates. It presents RD estimates on crime rates and clearance rates for pre-treatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.

Sample		pre-tre	atment			post-trea	atment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	-0.569*	-0.368	-0.269	-0.510*	-0.539**	-0.463**	-0.379**	-0.642***
Log Crime Rate	(0.291)	(0.261)	(0.247)	(0.294)	(0.215)	(0.200)	(0.172)	(0.227)
Clusters	80	101	123	78	89	113	137	79
Observations	613	784	957	596	743	945	1155	664
Bandwidth	750	1000	1250	730	750	1000	1250	689
Log Property Crime Rate	-0.591**	-0.385	-0.249	-0.589*	-0.555***	-0.460**	-0.383**	-0.659***
Log I toperty Crime Rate	(0.282)	(0.254)	(0.240)	(0.309)	(0.207)	(0.186)	(0.164)	(0.218)
Clusters	80	101	123	73	89	113	137	79
Observations	612	783	952	561	743	943	1152	664
Bandwidth	750	1000	1250	701	750	1000	1250	689
Log Violent Crime Rate	-0.110	-0.179	-0.126	-0.100	-0.502	-0.396	-0.310	-0.513
Log violent Chine Kate	(0.440)	(0.376)	(0.345)	(0.445)	(0.427)	(0.347)	(0.315)	(0.386)
Clusters	76	97	117	73	89	113	137	101
Observations	343	447	545	333	629	794	953	714
Bandwidth	750	1000	1250	719	750	1000	1250	856
Property Crime Clearance Rate	0.017	0.014	0.016	0.001	0.006	0.020	0.026	-0.011
Toperty Crime Clearance Kate	(0.033)	(0.030)	(0.028)	(0.034)	(0.034)	(0.030)	(0.027)	(0.037)
Clusters	80	101	123	62	89	113	137	66
Observations	612	783	952	474	743	943	1152	560
Bandwidth	750	1000	1250	617	750	1000	1250	582
Violent Crime Clearance Rate	-0.133	-0.093	-0.091	-0.138	0.147**	0.150***	0.090*	0.136**
violent Chine Clearance Kale	(0.086)	(0.077)	(0.067)	(0.088)	(0.059)	(0.052)	(0.051)	(0.064)
Clusters	76	97	117	67	89	113	137	71
Observations	343	447	545	308	629	794	953	498
Bandwidth	750	1000	1250	692	750	1000	1250	624

Online Appendix Table 2: Effect on Crime and Clearance Rates, Robustness to Using Yearly Data

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to using yearly data. It presents RD estimates on crime rates and clearance rates for pretreatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSEoptimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-year fixed effects are included in all columns.

Sample		post-tre	atment	
	(1)	(2)	(3)	(4)
Les Class Data	-0.538**	-0.393**	-0.315*	-0.609***
Log Crime Rate	(0.226)	(0.192)	(0.172)	(0.236)
Clusters	89	113	137	76
Observations	8906	11242	13623	7730
Bandwidth	750	1000	1250	661
Log Property Crime Rate	-0.549**	-0.404**	-0.323*	-0.608***
Log I Toperty Crime Rate	(0.218)	(0.185)	(0.165)	(0.225)
Clusters	89	113	137	77
Observations	8891	11215	13589	7822
Bandwidth	750	1000	1250	666
Log Violent Crime Rate	0.083	0.067	0.054	0.110
Log violent Crime Kate	(0.387)	(0.314)	(0.284)	(0.400)
Clusters	89	113	137	79
Observations	3036	3780	4407	2750
Bandwidth	750	1000	1250	687
Property Crime Clearance Rate	0.019	0.032	0.035	0.007
roperty crime clearance Kate	(0.034)	(0.030)	(0.027)	(0.036)
Clusters	89	113	137	76
Observations	8891	11215	13589	7719
Bandwidth	750	1000	1250	662
Violent Crime Clearance Rate	0.110**	0.103**	0.086**	0.058
violent Chine Clearance Kate	(0.047)	(0.042)	(0.042)	(0.052)
Clusters	89	113	137	59
Observations	3036	3780	4407	2127
Bandwidth	750	1000	1250	542

Online Appendix Table 3: Effect on Crime and Clearance Rates, Robustness to Controlling for 1980 Population

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to controlling for 1980 population. It presents RD estimates on crime rates and clearance rates for post-treatment years (1970 to 1979, columns 1 to 4). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.

Sample		post-tre	atment	
	(1)	(2)	(3)	(4)
	-0.442*	-0.385*	-0.294	-0.542**
Log Crime Rate	(0.247)	(0.213)	(0.191)	(0.265)
Clusters	73	89	110	59
Observations	7187	8702	10759	6000
Bandwidth	750	1000	1250	634
Log Proporty Crime Date	-0.455*	-0.398*	-0.303*	-0.560**
Log Property Crime Rate	(0.237)	(0.204)	(0.183)	(0.257)
Clusters	73	89	110	58
Observations	7173	8676	10727	5884
Bandwidth	750	1000	1250	626
Log Violent Crime Rate	0.160	0.152	0.126	0.156
Log violent Chine Kate	(0.407)	(0.375)	(0.334)	(0.402)
Clusters	71	89	110	75
Observations	2256	2643	3138	2379
Bandwidth	750	1000	1250	777
Property Crime Clearance Rate	0.026	0.039	0.046	0.015
Toperty Chine Clearance Rate	(0.035)	(0.033)	(0.030)	(0.037)
Clusters	73	89	110	68
Observations	7173	8676	10727	6674
Bandwidth	750	1000	1250	715
Violent Crime Clearance Rate	0.069	0.075	0.058	0.018
violent Chine Clearance Kale	(0.054)	(0.050)	(0.050)	(0.058)
Clusters	71	89	110	47
Observations	2256	2643	3138	1589
Bandwidth	750	1000	1250	533

Online Appendix Table 4: Effect on Crime and Clearance Rates, Robustness to Dropping Population Growth Outliers

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to dropping municipalities with population growth above 20% between 1970 and 1980. It presents RD estimates on crime rates and clearance rates for post-treatment years (1970 to 1979). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.

Sample		pre-tre	atment			post-trea	atment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
I C D I	-0.336*	-0.224	-0.081	-0.257	-0.574**	-0.476**	-0.378**	-0.612**
Log Crime Rate	(0.200)	(0.170)	(0.165)	(0.231)	(0.236)	(0.199)	(0.177)	(0.250)
Clusters	74	92	112	58	74	92	112	63
Observations	5698	7188	8692	4348	7885	9814	11885	6775
Bandwidth	750	1000	1250	613	750	1000	1250	648
Log Property Crime Rate	-0.311	-0.202	-0.052	-0.239	-0.581**	-0.486**	-0.386**	-0.531**
Log I Toperty Clinie Rate	(0.191)	(0.163)	(0.159)	(0.218)	(0.227)	(0.192)	(0.170)	(0.266)
Clusters	74	92	112	58	74	92	112	52
Observations	5609	7089	8567	4295	7875	9799	11867	5600
Bandwidth	750	1000	1250	614	750	1000	1250	564
Log Violent Crime Rate	0.076	-0.007	0.043	0.097	0.127	0.126	0.160	0.123
Log violent Chine Rate	(0.344)	(0.303)	(0.270)	(0.358)	(0.427)	(0.353)	(0.324)	(0.423)
Clusters	61	81	100	53	74	92	112	76
Observations	917	1117	1399	790	2583	3166	3728	2654
Bandwidth	750	1000	1250	682	750	1000	1250	764
Property Crime Cleaner of Pate	0.029	0.025	0.028	0.048	0.007	0.024	0.022	-0.009
Property Crime Clearance Rate	(0.043)	(0.041)	(0.040)	(0.044)	(0.038)	(0.033)	(0.028)	(0.047)
Clusters	74	92	112	49	74	92	112	34
Observations	4280	5431	6507	2829	7875	9799	11867	3766
Bandwidth	750	1000	1250	530	750	1000	1250	363
Violent Crime Clearance Rate	-0.094	-0.073	-0.065	-0.081	0.108**	0.110**	0.085*	0.048
violent Chine Clearance Kate	(0.098)	(0.092)	(0.083)	(0.089)	(0.051)	(0.045)	(0.045)	(0.057)
Clusters	58	77	96	36	74	92	112	44
Observations	807	996	1236	533	2583	3166	3728	1557
Bandwidth	750	1000	1250	550	750	1000	1250	496

Online Appendix Table 5: Effect on Crime and Clearance Rates, Robustness to Quasi-balanced Sample

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to restricting the sample to municipalities reporting at least half of the times. It presents RD estimates on crime rates and clearance rates for pre-treatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.

Sample		pre-tre	atment			post-tre	atment	ment		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
	-0.256	-0.134	0.012	-0.197	-0.554***	-0.430**	-0.326**	-0.610***		
Log Crime Rate	(0.183)	(0.166)	(0.166)	(0.207)	(0.195)	(0.178)	(0.166)	(0.207)		
Clusters	80	101	123	62	89	113	137	76		
Observations	5811	7413	8929	4437	8906	11242	13623	7730		
Bandwidth	750	1000	1250	623	750	1000	1250	661		
Log Property Crime Rate	-0.242	-0.122	0.033	-0.138	-0.559***	-0.436**	-0.331**	-0.606***		
Log Hoperty Clinie Rate	(0.177)	(0.162)	(0.163)	(0.227)	(0.190)	(0.173)	(0.162)	(0.201)		
Clusters	80	101	123	59	89	113	137	77		
Observations	5715	7302	8790	4113	8891	11215	13589	7822		
Bandwidth	750	1000	1250	583	750	1000	1250	666		
Log Violent Crime Rate	0.112	0.011	-0.015	0.094	-0.168	-0.073	-0.062	-0.173		
Log violent Crime Kate	(0.239)	(0.189)	(0.166)	(0.262)	(0.142)	(0.132)	(0.130)	(0.146)		
Clusters	65	88	109	59	89	113	137	79		
Observations	950	1171	1454	858	3036	3780	4407	2750		
Bandwidth	750	1000	1250	698	750	1000	1250	687		
Property Crime Clearance Rate	0.010	0.014	0.019	-0.006	0.006	0.028	0.027	-0.003		
Toperty Clinie Clearance Rate	(0.045)	(0.042)	(0.039)	(0.047)	(0.038)	(0.032)	(0.027)	(0.038)		
Clusters	80	101	122	55	89	113	137	76		
Observations	4329	5570	6648	2940	8891	11215	13589	7719		
Bandwidth	750	1000	1250	546	750	1000	1250	662		
Violent Crime Clearance Rate	-0.170	-0.117	-0.108	-0.228*	0.060	0.063	0.040	0.003		
violent Chine Clearance Kale	(0.122)	(0.098)	(0.087)	(0.129)	(0.055)	(0.045)	(0.044)	(0.063)		
Clusters	62	84	105	46	89	113	137	59		
Observations	830	1039	1280	637	3036	3780	4407	2127		
Bandwidth	750	1000	1250	615	750	1000	1250	542		

Online Appendix Table 6a: Effect on Crime and Clearance Rates, Robustness to Including Municipality Controls

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to the inclusion of controls. It presents RD estimates on crime rates and clearance rates for pretreatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The controls included in the regression are percentage male, percentage non-white, percentage with high school degree, percentage unemployed and percentage below poverty line according to the 1970 census. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. Statemonth fixed effects are included in all columns.

Sample		pre-trea	tment			post-trea	atment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	-0.467***	-0.464***	-0.218	-0.435**	-0.652***	-0.661***	-0.461**	-0.664***
Log Crime Rate	(0.167)	(0.151)	(0.163)	(0.176)	(0.215)	(0.192)	(0.181)	(0.217)
Clusters	80	101	123	62	89	113	137	76
Observations	5811	7413	8929	4437	8906	11242	13623	7730
Bandwidth	750	1000	1250	623	750	1000	1250	661
Log Property Crime Rate	-0.470***	-0.465***	-0.199	-0.416**	-0.658***	-0.668***	-0.465***	-0.661***
Log i toperty Crime Rate	(0.161)	(0.147)	(0.161)	(0.183)	(0.212)	(0.190)	(0.179)	(0.214)
Clusters	80	101	123	59	89	113	137	77
Observations	5715	7302	8790	4113	8891	11215	13589	7822
Bandwidth	750	1000	1250	583	750	1000	1250	666
Log Violent Crime Rate	0.209	0.018	-0.031	0.194	-0.166	-0.100	-0.077	-0.171
Log violent Crime Rate	(0.247)	(0.202)	(0.177)	(0.267)	(0.151)	(0.135)	(0.131)	(0.154)
Clusters	65	88	109	59	89	113	137	79
Observations	950	1171	1454	858	3036	3780	4407	2750
Bandwidth	750	1000	1250	698	750	1000	1250	687
Property Crime Clearance Rate	0.036	0.034	0.030	0.000	0.019	0.028	0.028	0.005
Toperty Chine Clearance Nate	(0.045)	(0.043)	(0.039)	(0.047)	(0.041)	(0.034)	(0.028)	(0.039)
Clusters	80	101	122	55	89	113	137	76
Observations	4329	5570	6648	2940	8891	11215	13589	7719
Bandwidth	750	1000	1250	546	750	1000	1250	662
Violent Crime Clearance Rate	-0.104	-0.061	-0.061	-0.167	0.069	0.108**	0.071	-0.005
Violent Crime Clearance Rate	(0.145)	(0.113)	(0.097)	(0.142)	(0.053)	(0.045)	(0.044)	(0.056)
Clusters	62	84	105	46	89	113	137	59
Observations	830	1039	1280	637	3036	3780	4407	2127
Bandwidth	750	1000	1250	615	750	1000	1250	542

Online Appendix Table 6b: Effect on Crime and Clearance Rates, Robustness to Including Municipality Controls Including Median HH Income

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to the inclusion of controls. It presents RD estimates on crime rates and clearance rates for pretreatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The controls included in the regression are percentage male, percentage non-white, percentage with high school degree, percentage unemployed, percentage below poverty line and median income according to the 1970 census. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.

Sample	p	ost-treatmen	t
	(1)	(2)	(3)
	-0.301*	-0.276*	-0.299**
Log Crime Rate	(0.165)	(0.149)	(0.138)
Clusters	89	113	137
Observations	14717	18655	22552
Bandwidth	750	1000	1250
L Dramantes Crima - Data	-0.297*	-0.279*	-0.314**
Log Property Crime Rate	(0.163)	(0.147)	(0.136)
Clusters	89	113	137
Observations	14606	18517	22379
Bandwidth	750	1000	1250
L Wi-last Crime Data	-0.129	-0.028	0.072
Log Violent Crime Rate	(0.229)	(0.192)	(0.182)
Clusters	88	112	136
Observations	3985	4950	5860
Bandwidth	750	1000	1250
Dronoutry Crime Cleanen eo Date	-0.004	0.011	0.004
Property Crime Clearance Rate	(0.049)	(0.044)	(0.042)
Clusters	89	113	137
Observations	13220	16785	20237
Bandwidth	750	1000	1250
Violent Crime Clearance Rate	0.188**	0.168**	0.157**
violent Crime Clearance Rate	(0.086)	(0.080)	(0.074)
Clusters	88	112	136
Observations	3865	4818	5686
Bandwidth	750	1000	1250

Online Appendix Table 7: Effect on Crime and Clearance Rates, Robustness to Using a Differences-in-Differences Specification

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to using a differences-in-differences specification. It presents RD estimates on crime rates and clearance rates for 1960 to 1979. Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a uniform kernel for three different bandwidths: 750, 1000, 1250. The running variable is allowed to vary by year. Standard errors clustered at the municipality level are shown in parentheses. Statemonth and municipality fixed effects are included in all columns.

Online Appendix Table 8: Effect on Crime and Clearance Rates, Robustness to two-way Clustering

Sample		pre-tre	atment			post-trea	atment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Log Crime Rate	-0.308*	-0.194	-0.055	-0.226	-0.575***	-0.451**	-0.383**	-0.625***
0	(0.184)	(0.161)	(0.156)	(0.210)	(0.211)	(0.180)	(0.161)	(0.220)
Clusters (municipality)	80	101	123	62	89	113	137	76
Clusters (county-month)	677	683	683	646	659	659	659	659
Observations	5811	7413	8929	4437	8906	11242	13623	7730
Bandwidth	750	1000	1250	623	750	1000	1250	661
Log Property Crime Rate	-0.293*	-0.179	-0.034	-0.098	-0.587***	-0.461***	-0.394**	-0.628***
Log Hoperty Clinic Rate	(0.176)	(0.154)	(0.151)	(0.210)	(0.203)	(0.173)	(0.155)	(0.210)
Clusters (municipality)	80	101	123	59	89	113	137	77
Clusters (county-month)	669	677	677	639	659	659	659	659
Observations	5715	7302	8790	4113	8891	11215	13589	7822
Bandwidth	750	1000	1250	583	750	1000	1250	666
Log Violent Crime Rate	0.117	0.028	0.071	0.127	0.081	0.087	0.115	0.093
Log violent Chine Rate	(0.296)	(0.265)	(0.240)	(0.306)	(0.364)	(0.298)	(0.272)	(0.377)
Clusters (municipality)	65	88	109	59	89	113	137	79
Clusters (county-month)	195	220	248	181	431	485	527	393
Observations	950	1171	1454	858	3036	3780	4407	2750
Bandwidth	750	1000	1250	698	750	1000	1250	687
Property Crime Clearance Rate	0.029	0.025	0.029	0.040	0.015	0.028	0.030	0.005
Toperty Crime Clearance Rate	(0.040)	(0.038)	(0.038)	(0.040)	(0.034)	(0.030)	(0.027)	(0.035)
Clusters (municipality)	80	101	122	55	89	113	137	76
Clusters (county-month)	482	486	486	445	659	659	659	659
Observations	4329	5570	6648	2940	8891	11215	13589	7719
Bandwidth	750	1000	1250	546	750	1000	1250	662
Violent Crime Clearance Rate	-0.096	-0.078	-0.067	-0.143	0.109**	0.106***	0.089**	0.055
violent Chine Cleanance Rate	(0.091)	(0.085)	(0.077)	(0.096)	(0.044)	(0.039)	(0.039)	(0.048)
Clusters (municipality)	62	84	105	46	89	113	137	59
Clusters (county-month)	160	182	204	132	431	485	527	329
Observations	830	1039	1280	637	3036	3780	4407	2127
Bandwidth	750	1000	1250	615	750	1000	1250	542

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to clustering standard errors by municipality and by county-month. It presents RD estimates on crime rates and clearance rates for pre-treatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality and county-month level are shown in parentheses. Statemonth fixed effects are included in all columns.

Sample						pre-treatment	atment					
State being excluded		A	AZ			П	. 1			IA		
	(1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)	(11)	(12)
Log Crime Rate	-0.293 (0.189)	-0.179 (0.162)	-0.034 (0.157)	-0.217 (0.217)	0.086 (0.251)	0.237 (0.188)	0.293* (0.174)	-0.002 (0.268)	-0.484** (0.209)	-0.329* (0.169)	-0.181 (0.163)	-0.428* (0.223)
Clusters Observations Bandwidth	80 5715 750	101 7302 1000	123 8790 1250	62 4378 619	40 2971 750	50 3863 1000	62 4740 1250	23 1522 458	72 4842 750	89 5986 1000	109 7269 1250	61 4204 640
Log Property Crime Rate Clusters Observations Bandwidth	-0.293 (0.189) 80 5715 750	-0.179 (0.162) 101 7302 1000	-0.034 (0.157) 123 8790 1250	-0.217 (0.217) 62 4378 619	0.086 (0.251) 40 2971 750	0.237 (0.188) 50 3863 1000	0.293* (0.174) 62 4740 1250	-0.002 (0.268) 23 1522 458	-0.484** (0.209) 72 4842 750	-0.329* (0.169) 89 5986 1000	-0.181 (0.163) 109 7269 1250	-0.428* (0.223) 61 4204 640
Log Violent Crime Rate Clusters Observations Bandwidth	0.117 (0.334) 65 950 750	0.028 (0.294) 88 1171 1000	0.071 (0.263) 109 1454 1250	0.017 (0.324) 72 1022 776	0.348 (0.320) 26 202 750	0.257 (0.244) 38 286 1000	0.267 (0.227) 49 380 1250	0.386 (0.379) 23 166 714	0.158 (0.358) 57 842 750	0.029 (0.314) 76 997 1000	0.080 (0.283) 95 1218 1250	0.016 (0.342) 64 901 824
Property Crime Clearance Rate Clusters Observations Bandwidth	0.029 (0.043) 80 4329 750	0.025 (0.041) 101 5570 1000	0.029 (0.040) 122 6648 1250	0.036 (0.045) 51 2745 502	0.088 (0.074) 40 2201 750	0.037 (0.073) 50 2872 1000	0.040 (0.066) 62 3529 1250	0.183* (0.110) 26 1387 504	0.001 (0.042) 72 3705 750	0.001 (0.040) 89 4622 1000	0.002 (0.040) 108 5555 1250	0.009 (0.034) 38 1891 440
Violent Crime Clearance Rate Clusters Observations Bandwidth	-0.096 (0.098) 62 830 750	-0.078 (0.090) 84 1039 1000	-0.067 (0.082) 105 1280 1250	-0.117 (0.102) 52 706 676	0.120 (0.131) 24 189 750	0.136 (0.099) 35 269 1000	0.184* (0.110) 46 356 1250	22.368** (4.693) 7 43 426	-0.127 (0.104) 54 752 750	-0.106 (0.095) 72 867 1000	-0.109 (0.088) 91 1053 1250	-0.140 (0.103) 50 677 705
Notes: *** p<0.01, ** p<0.05, * p<0.1. The table shows that the results are not driven by any single state and thus do not depend on other state-specific laws also changing at the same threshold. It presents RD estimates on crime rates and clearance rates for pre-treatment years (1960 to 1969) and post-treatment years (1970 to 1979). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.	0.1. The tal It presents] us is from th es. The coef iffic MSE-op	ole shows t RD estimat ne 1970 cen ficients are otimal band	that the reseanching crime sus experime estimated lwidth. Star	ults are no rates and nent. Crime using locall ndard error	t driven by clearance ra rates are cr y linear reg s clustered	any single thes for pre imes per 10 gression anu at the mun	e state and -treatment 00,000 peop d a uniform icipality lev	thus do nc years (1960 le and clear h kernel for el are show	of depend of to 1969) ar ance rates four differ m in paren	on other str id post-tree are number ent bandw theses. Stat	ate-specific atment yea r of crimes idths: 750, e-month fi	laws also rs (1970 to cleared by 1000, 1250 wed effects

Online Appendix Table 9: Effect on Crime and Clearance Rates, Robustness to other Policies Changing at the Same Threshold

		(28)	-0.369	(0.265)	43	3011	523	-0.369	(0.265)	43	3011	522	0.115	(0.334)	57	928	744	-0.015	(0.049)	49	2720	612	-0.096	(0.094)	67	926	874
	УТГ	(27)	0.007	(0.193)	98	7289	1250	0.007	(0.193)	98	7289	1250	0.073	(0.264)	95	1423	1250	0.028	(0.045)	67	5474	1250	-0.067	(0.082)	93	1251	1250
	WI CITY	(26)	-0.200	(0.197)	82	6077	1000	-0.200	(0.197)	82	6077	1000	0.029	(0.294)	76	1144	1000	0.021	(0.047)	82	4614	1000	-0.083	(060.0)	74	1014	1000
		(25)	-0.342	(0.229)	65	4748	750	-0.342	(0.229)	65	4748	750	0.115	(0.334)	57	928	750	0.017	(0.049)	65	3601	750	-00.09	(0.098)	56	810	750
		(24)	-0.104	(0.158)	107	7736	1131	-0.104	(0.158)	107	7736	1131	0.117	(0.334)	65	950	746	0.055	(0.045)	39	2177	444	-0.120	(0.106)	47	660	630
	NE	(23)	-0.039	(0.162)	114	8169	1250	-0.039	(0.162)	114	8169	1250	0.071	(0.264)	102	1444	1250	0.044	(0.040)	113	6225	1250	-0.066	(0.082)	66	1272	1250
	z	(22)	-0.170	(0.163)	94	6875	1000	-0.170	(0.163)	94	6875	1000	0.029	(0.294)	85	1167	1000	0.034	(0.041)	94	5278	1000	-0.080	(060.0)	82	1037	1000
pre-treatment		(21)	-0.242	(0.184)	74	5361	750	-0.242	(0.184)	74	5361	750	0.117	(0.334)	65	950	750	0.031	(0.044)	74	4070	750	-0.096	(0.098)	62	830	750
pre-tre		(20)	-0.096	(0.231)	56	3823	586	-0.096	(0.231)	56	3823	586	0.312	(0.358)	36	551	480	0.022	(0.046)	57	3059	591	-0.152	(0.111)	41	615	603
	Ш	(19)	-0.049	(0.158)	118	8378	1250	-0.049	(0.158)	118	8378	1250	0.070	(0.263)	104	1437	1250	0.038	(0.039)	117	6357	1250	-0.066	(0.082)	100	1263	1250
	Z	(18)	-0.214	(0.162)	96	6890	1000	-0.214	(0.162)	96	6890	1000	0.024	(0.294)	83	1154	1000	0.038	(0.040)	96	5279	1000	-0.075	(0.091)	79	1022	1000
		(17)	-0.292	(0.188)	76	5421	750	-0.292	(0.188)	76	5421	750	0.116	(0.334)	61	942	750	0.032	(0.042)	76	4124	750	-0.094	(0.098)	58	822	750
		(16)	-0.107	(0.232)	55	3914	581	-0.107	(0.232)	55	3914	581	0.078	(0.341)	61	892	734	0.003	(0.046)	55	3035	584	-0.096	(0.095)	68	891	851
	A	(15)	-0.052	(0.160)	119	8591	1250	-0.052	(0.160)	119	8591	1250	0.043	(0.274)	105	1396	1250	0.037	(0.040)	118	6502	1250	-0.064	(0.084)	101	1233	1250
	L.	(14)	-0.198	(0.163)	97	7103	1000	-0.198	(0.163)	67	7103	1000	-0.002	(0.303)	84	1113	1000	0.032	(0.042)	67	5424	1000	-0.076	(0.092)	80	992	1000
		(13)	-0.311*	(0.189)	76	5516	750	-0.311*	(0.189)	76	5516	750	0.078	(0.341)	61	892	750	0.032	(0.043)	76	4183	750	-0.094	(0.098)	58	783	750

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(32) -0.092 57 587 587 -0.092 (0.231) 57 3941 587 0.327 (0.370) 37 37 37 37 37 37 37 37 37 37 37 37 37		(0.163 (0.163 (0.163 (0.163 (0.163 (0.163 (0.163 (0.163 (0.264 (0.264 (0.264) (0.264) (0.264)	(30) (31) -0.175 -0.048 -0.175 -0.048 98 118 7018 8304 1000 1250 0.165) (0.163 1000 1250 98 118 98 118 7018 8304 1000 1250 98 118 7018 8304 1000 1250 0.031 0.074 0.031 0.074 86 104 86 1045 1165 1426
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	¥ ¥	e a e e	-0.587* (0.213) 89 891 750 (0.213) 89 8891 750 0.081 (0.395) 89 8891 750 0.081		-0.092 57 3941 587 -0.092 (0.231) 57 57 3941 57 3941 587 0.327 (0.370) 37	-0.048 -0.092 (0.163) (0.231) 118 57 8304 3941 1250 587 -0.048 -0.092 (0.163) (0.231) 118 57 8304 3941 118 57 8304 3941 1250 587 (0.264) (0.370) 104 37 1426 544
$ \begin{array}{cccccc} (0.230) & (0.272) & (0.225) & (0.201) \\ 73 & 48 & 60 & 74 \\ 7387 & 4729 & 5957 & 7479 \\ 635 & 750 & 1000 & 1250 \\ -0.620^{**} & -0.529^{*} & -0.442^{**} & -0.380^{*} \ \# \\ (0.230) & (0.272) & (0.225) & (0.201) \\ 73 & 48 & 60 & 74 \\ \end{array} $	*	<u> </u>	(0.213) 89 8891 750 -0.587*** -0.587*** (0.213) 89 8891 750 0.081 (0.395) 89 889		(0.231) 57 587 587 -0.092 (0.231) 57 3941 587 0.327 (0.370) 37	(0.163) (0.231) 118 57 8304 3941 1250 587 -0.048 -0.092 (0.163) (0.231) 118 57 8304 3941 1250 587 0.074 0.327 (0.264) (0.370) 104 37 1426 544
73 48 60 74 7387 4729 5957 7479 635 750 1000 1250 -0.620^{**} -0.529^{*} -0.442^{**} -0.380^{*} (0.230) (0.272) (0.225) (0.201) 73 48 60 74	*			89 8891 750 -0.587*** (0.213) 89 89 8891 750 0.081 (0.395)	57 89 3941 8891 587 750 -0.092 -0.587*** (0.231) (0.213) 57 89 3941 8891 57 89 3941 8991 57 89 3941 8991 57 89 3941 8991 57 89 37 9.0081 0.370) (0.395) 37 89	118 57 89 8304 3941 8891 8304 3941 8891 1250 587 750 -0.048 -0.092 -0.587^{***} (0.163) (0.231) (0.213) 118 57 89 8304 3941 8891 1250 587 750 0.074 0.327 0.081 (0.264) (0.370) (0.395) 104 37 89 1426 544 3036
7387 4729 5957 7479 635 750 1000 1250 ** -0.620** -0.529* -0.442** -0.380* # (0.230) (0.272) (0.225) (0.201) 73 48 60 74	*			8891 750 -0.587*** (0.213) 89 8891 750 0.081 (0.395)	3941 8891 587 750 -0.092 -0.587*** (0.231) (0.213) 57 89 3941 8891 587 750 0.327 0.081 (0.370) (0.395) 37 89	8304 3941 8891 1250 587 750 -0.048 -0.092 -0.587*** (0.163) (0.2131) (0.213) 1118 57 89 8304 3941 8891 1150 587 750 8304 3941 8891 1250 587 750 0.074 0.327 0.081 0.074 0.377 0.081 104 37 89 1426 544 3036
635 750 1000 1250 ** -0.620*** -0.529* -0.442** -0.380* # (0.230) (0.272) (0.225) (0.201) 73 48 60 74	· e · · e			750 -0.587*** (0.213) 89 8891 750 0.081 (0.395)	587 750 -0.092 -0.587*** (0.231) (0.213) 57 89 3941 8891 587 750 0.327 0.081 (0.370) (0.395) 37 89	1250 587 750 -0.048 -0.092 -0.587*** (0.163) (0.2131) (0.213) 1118 57 89 8304 3941 8891 1250 587 750 0.074 0.327 0.081 (0.264) (0.370) (0.395) 104 37 89 1426 544 3036
** -0.620*** -0.529* -0.442** -0.380* # (0.230) (0.272) (0.225) (0.201) 73 48 60 74	*			-0.587*** (0.213) 89 8891 750 0.081 (0.395)	-0.092 -0.587*** (0.231) (0.213) 57 89 3941 8891 587 750 0.327 0.081 (0.370) (0.395) 37 89	-0.048 -0.092 -0.587*** (0.163) (0.231) (0.213) 118 57 89 8304 3941 8891 1250 587 750 0.074 0.327 0.081 (0.264) (0.370) (0.395) 104 37 89 1426 544 3036
$ \begin{array}{rrrr} (0.230) & (0.272) & (0.225) & (0.201) \\ 73 & 48 & 60 & 74 \\ \end{array} $		5 7 5		(0.213) 89 8891 750 0.081 (0.395)	(0.231) (0.213) 57 89 3941 8891 587 750 0.327 0.081 (0.370) (0.395) 37 89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
73 48 60 74	-			89 8891 750 0.081 (0.395)	57 89 3941 8891 587 750 0.327 0.081 (0.370) (0.395) 37 89	118 57 89 8304 3941 8891 1250 587 750 0.074 0.327 0.081 (0.264) (0.370) (0.395) 104 37 89 1426 544 3036
	_			8891 750 0.081 (0.395)	3941 8891 587 750 0.327 0.081 (0.370) (0.395) 37 89	8304 3941 8891 1250 587 750 0.074 0.327 0.081 (0.264) (0.370) (0.395) 104 37 89 1426 544 3036
7387 4729 5957	-		_	750 0.081 (0.395)	587 750 0.327 0.081 (0.370) (0.395) 37 89	1250 587 750 0.074 0.327 0.081 (0.264) (0.370) (0.395) 1 104 37 89 1426 544 3036
	_	00	-	0.081 (0.395)	0.327 0.081 (0.370) (0.395) - 37 89 	0.074 0.327 0.081 (0.264) (0.370) (0.395) 1 104 37 89 1426 544 3036
0.074 -0.103 0.027	-	0	-	(0.395)	(0.370) (0.395) 37 89 511 0000	(0.264) (0.370) (0.395) (0.395) (0.340) (0.395
(0.361) (0.317) (0.264) (37 89	104 37 89 1426 544 3036
100 48 60		•		89		1426 544 3036
3445 1028 1338		6		3036	544 3036	
) 848 750 1000 1250	1000 1250	10	750 10		458 750	1250 458 750
0.010 0.063 0.078		о.		0.015	0.046 0.015	0.016 0.046 0.015
(0.037) (0	(0.031) (0.028)	<u> </u>	(0.036) (0.0	-	(0.043) (0.036) ((0.043) (0.036) (
79 48 60		-		89	51 89	117 51 89
7948 4729 5957	11215 13589			8891	2709 8891	6246 2709 8891
0 682 750 1000 1250	1000 1250	-	750 1		537 750	1250 537 750
** 0.105** 0.237** [*] 0.258** [*]	*		*	0.109**	-0.101 0.109**	-0.101 0.109**
(0.052) (0.072) (0	0	o.	(0.047) (0.	5) (0.047) ((0.095) (0.047) ((0.082) (0.095) (0.047) (
77 48 60				89	68 89	100 68 89
2699 1028 1338	3780 4407	3		3036	918 3036	1252 918 3036
) 666 750 1000 1250	00 1250	<u>1</u> 0	750 10		814 750	1250 814 750

								post-treatment	atment							
		M	L			LA				NB				WI CITY	ΥT	
	(45)	(46)	(47)	(48)	(49)	(50)	(51)	(52)	(53)	(54)	(55)	(56)	(57)	(58)	(59)	(09)
	-0.562**:	-0.465**	-0.410**	-0.616**:	-0.586**:	-0.467**	-0.396**	-0.635**:	-0.591**:	-0.453**	-0.356**	-0.651**:	-0.575**	-0.439**	-0.391**	-0.501**
	(0.213)	(0.182)	(0.163)	(0.222)	(0.213)	(0.182)	(0.160)	(0.223)	(0.224)	(0.192)	(0.171)	(0.238)	(0.248)	(0.214)	(0.187)	(0.221)
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	80	103	127	73	85	108	132	73	82	105	126	69	72	91	108	88
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	8280	10552	12926	7568	8699	10968	13342	7539	8089	10303	12370	6917	6984	8758	10391	8468
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	750	1000	1250	209	750	1000	1250	660	750	1000	1250	646	750	1000	1250	929
	-0.562**:	-0.465**	-0.410**	-0.616**	-0.586***	-0.467**		-0.635**:	-0.591***	-0.453**	-0.356**	-0.651**:	-0.575**	-0.439**	-0.391**	-0.501**
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	(0.213)	(0.182)	(0.163)	(0.222)	(0.213)	(0.182)		(0.223)	(0.224)	(0.192)	(0.171)	(0.238)	(0.248)	(0.214)	(0.187)	(0.221)
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	80	103	127	73	85	108		73	82	105	126	69	72	16	108	88
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8280	10552	12926	7568	8699	10968		7539	8089	10303	12370	6917	6984	8758	10391	8468
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	750	1000	1250	209	750	1000		660	750	1000	1250	646	750	1000	1250	929
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.136	0.123	0.138	0.121	0.081	0.082	0.113	0.093	0.075	0.077	0.123	0.069	0.068	0.066	0.099	060.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0.424)	(0.352)	(0.325)	(0.351)	(0.395)	(0.320)	(0.292)	(0.409)	(0.401)	(0.326)	(0.302)	(0.366)	(0.396)	(0.325)	(0.297)	(0.409)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	80	103	127	100	85	108	132	76	82	105	126	16	72	91	108	67
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2669	3376	4003	3310	3026	3742	4369	2742	2820	3543	4076	3165	2832	3506	4066	2673
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	750	1000	1250	984	750	1000	1250	069	750	1000	1250	826	750	1000	1250	703
	0.015	0.032	0.034	0.005	0.014	0.026	0.029	0.012	0.000	0.016	0.013	0.006	0.010	0.013	0.023	0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0.036)	(0.032)	(0.028)	(0.040)	(0.036)	(0.031)	(0.028)	(0.039)	(0.036)	(0.032)	(0.028)	(0.041)	(0.036)	(0.030)	(0.028)	(0.033)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80	103	127	51	85	108	132	57	82	105	126	54	72	16	108	81
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8280	10552	12926	5454	8699	10968	13342	5940	8089	10303	12370	5493	6984	8758	10391	7859
0.091** 0.077* 0.095* 0.110** 0.037* 0.097* 0.103** 0.077* 0.097* 0.107** 0.107** 0.107** 0.107** 0.106** 0.097* 0.105** 0.105** 0.106** 0.097* 0.105** 0.105** 0.106** 0.097** 0.105*	750	1000	1250	514	750	1000	1250	540	750	1000	1250	518	750	1000	1250	833
	0.094^{*}	0.091^{**}	0.077*	0.095*	0.110^{**}	0.103^{**}	0.087**	0.057	0.102**	0.102**	0.086**	*790.0	0.105**	**660.0	0.086**	0.048
103 127 73 85 108 132 59 82 105 126 70 72 3376 4003 2465 3026 3742 4369 2188 2820 3543 4076 2483 2832 1000 1250 701 750 1000 1250 561 750 100	(0.049)	(0.044)	(0.044)	(0.052)	(0.047)	(0.042)	(0.042)	(0.050)	(0.049)	(0.044)	(0.043)	(0.054)	(0.049)	(0.044)	(0.043)	(0.054)
3376 4003 2465 3026 3742 4369 2188 2820 3543 4076 2483 2832 1000 1250 701 750 1000 1250 561 750 1000 1250 675 750	80	103	127	73	85	108	132	59	82	105	126	70	72	91	108	47
1000 1250 701 750 1000 1250 561 750 1000 1250 675 750	2669	3376	4003	2465	3026	3742	4369	2188	2820	3543	4076	2483	2832	3506	4066	2024
	750	1000	1250	701	750	1000	1250	561	750	1000	1250	675	750	1000	1250	524

	(64)	-0.457***	(0.172)	122	11933	1140	-0.457***	(0.172)	122	11933	1140	0.094	(0.408)	76	2736	685	0:030	(0.030)	121	11836	1123	0.049	(0.051)	65	2389	600
atment ILL	(63)	-0.417**	(0.164)	132	12995	1250	-0.417**	(0.164)	132	12995	1250	0.110	(0.292)	132	4340	1250	0.030	(0.028)	132	12995	1250	0.090**	(0.042)	132	4340	1250
post-treatment WI VILL	(62)	-0.476***	(0.184)	110	10856	1000	-0.476**	(0.184)	110	10856	1000	0.087	(0.320)	110	3766	1000	0.027	(0.032)	110	10856	1000	0.105**	(0.042)	110	3766	1000
	(61)	-0.591**:	(0.214)	86	8532	750	-0.591**:	(0.214)	86	8532	750	0.082	(0.394)	86	3022	750	0.013	(0.036)	86	8532	750	0.109^{**}	(0.047)	86	3022	750

Sample		pre-tre	atment			post-trea	atment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	-0.278	-0.280	-0.177	-0.276	-0.589***	-0.558***	-0.485***	-0.591***
Log Crime Rate	(0.191)	(0.171)	(0.155)	(0.192)	(0.222)	(0.197)	(0.174)	(0.210)
Clusters	80	101	122	79	89	113	136	101
Observations	5715	7302	8769	5678	8891	11215	13485	10061
Bandwidth	750	1000	1250	735	750	1000	1250	857
Log Property Crime Rate	-0.278	-0.280	-0.177	-0.276	-0.589***	-0.558***	-0.485***	-0.591***
Log i toperty Crime Rate	(0.191)	(0.171)	(0.155)	(0.192)	(0.222)	(0.197)	(0.174)	(0.210)
Clusters	80	101	122	79	89	113	136	101
Observations	5715	7302	8769	5678	8891	11215	13485	10061
Bandwidth	750	1000	1250	735	750	1000	1250	857
Log Violent Crime Rate	0.232	0.118	0.100	0.332	0.136	0.108	0.090	0.119
Log Violent Crime Kate	(0.346)	(0.322)	(0.297)	(0.351)	(0.438)	(0.389)	(0.354)	(0.414)
Clusters	65	88	108	49	89	113	136	103
Observations	950	1171	1452	722	3036	3780	4394	3502
Bandwidth	750	1000	1250	621	750	1000	1250	879
Property Crime Clearance Rate	0.018	0.026	0.030	0.027	0.007	0.013	0.020	0.016
Toperty Chine Clearance Rate	(0.034)	(0.035)	(0.035)	(0.033)	(0.035)	(0.032)	(0.030)	(0.036)
Clusters	80	101	121	55	89	113	136	58
Observations	4329	5570	6633	2940	8891	11215	13485	5959
Bandwidth	750	1000	1250	552	750	1000	1250	518
Violent Crime Clearance Rate	-0.139*	-0.115	-0.097	-0.137*	0.074	0.082*	0.088**	0.060
violent Chine Clearance Kale	(0.081)	(0.083)	(0.082)	(0.081)	(0.048)	(0.044)	(0.040)	(0.048)
Clusters	62	84	104	66	89	113	136	78
Observations	830	1039	1278	895	3036	3780	4394	2720
Bandwidth	750	1000	1250	774	750	1000	1250	680

Online Appendix Table 10: Effect on Crime and Clearance Rates, Robustness to using a Triangular Kernel

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to using a triangular kernel. It presents RD estimates on crime rates and clearance rates for pretreatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a triangular kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSEoptimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.

Sample		pre-tre	atment			post-trea	atment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	-0.304	-0.301*	-0.166	-0.267	-0.596**	-0.541***	-0.451**	-0.592***
Log Crime Rate	(0.206)	(0.179)	(0.161)	(0.218)	(0.232)	(0.202)	(0.178)	(0.219)
Clusters	80	101	122	69	89	113	136	100
Observations	5811	7413	8905	5055	8906	11242	13519	9971
Bandwidth	750	1000	1250	673	750	1000	1250	846
Log Property Crime Rate	-0.294	-0.284*	-0.150	-0.235	-0.605***	-0.548***	-0.459***	-0.606***
Log Property Crime Kate	(0.193)	(0.170)	(0.153)	(0.206)	(0.221)	(0.193)	(0.170)	(0.211)
Clusters	80	101	122	65	89	113	136	98
Observations	5715	7302	8769	4602	8891	11215	13485	9772
Bandwidth	750	1000	1250	639	750	1000	1250	819
Log Violant Crime Data	0.182	0.066	0.069	0.407	0.095	0.081	0.070	0.086
Log Violent Crime Rate	(0.343)	(0.315)	(0.287)	(0.367)	(0.423)	(0.364)	(0.329)	(0.399)
Clusters	65	88	108	41	89	113	136	100
Observations	950	1171	1452	630	3036	3780	4394	3445
Bandwidth	750	1000	1250	507	750	1000	1250	844
Property Crime Clearance Rate	0.019	0.030	0.033	0.034	0.008	0.016	0.023	0.014
Toperty Chine Clearance Rate	(0.037)	(0.038)	(0.038)	(0.037)	(0.035)	(0.032)	(0.029)	(0.038)
Clusters	80	101	121	56	89	113	136	58
Observations	4329	5570	6633	2989	8891	11215	13485	5959
Bandwidth	750	1000	1250	559	750	1000	1250	511
Violent Crime Clearance Rate	-0.125	-0.101	-0.084	-0.118	0.082*	0.088**	0.094**	0.062
Violent Chine Clearance Kate	(0.090)	(0.089)	(0.085)	(0.090)	(0.048)	(0.044)	(0.040)	(0.049)
Clusters	62	84	104	71	89	113	136	77
Observations	830	1039	1278	925	3036	3780	4394	2699
Bandwidth	750	1000	1250	836	750	1000	1250	676

Online Appendix Table 11: Effect on Crime and Clearance Rates, Robustness to using a Epanechnikov Kernel

Notes: *** p<0.01, ** p<0.1. The tables shows robustness to using a Epanechnikov kernel.It presents RD estimates on crime rates and clearance rates for pre-treatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a Epanechnikov kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.

Sample		pre-tre	atment			post-tre	atment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
L C' D'	-0.162	-0.404*	-0.403*	-0.360	-0.520*	-0.632**	-0.595**	-0.596**
Log Crime Rate	(0.263)	(0.235)	(0.227)	(0.230)	(0.291)	(0.274)	(0.255)	(0.258)
Clusters	80	101	123	110	89	113	137	133
Observations	5811	7413	8929	7933	8906	11242	13623	13212
Bandwidth	750	1000	1250	1084	750	1000	1250	1171
Log Property Crime Rate	-0.168	-0.396*	-0.397*	-0.376*	-0.533*	-0.640**	-0.602**	-0.620**
Log I Toperty Clinie Kate	(0.242)	(0.220)	(0.214)	(0.220)	(0.274)	(0.259)	(0.243)	(0.267)
Clusters	80	101	123	102	89	113	137	108
Observations	5715	7302	8790	7377	8891	11215	13589	10706
Bandwidth	750	1000	1250	1019	750	1000	1250	947
Log Violent Crime Rate	0.438	0.263	0.084	0.287	0.232	0.128	0.047	0.132
Log violent Chine Kate	(0.367)	(0.343)	(0.337)	(0.339)	(0.470)	(0.454)	(0.420)	(0.455)
Clusters	65	88	109	84	89	113	137	114
Observations	950	1171	1454	1138	3036	3780	4407	3788
Bandwidth	750	1000	1250	956	750	1000	1250	1033
Property Crime Clearance Rate	0.039	0.049	0.049	0.052	-0.010	-0.007	0.010	-0.006
Property Crime Clearance Kate	(0.048)	(0.048)	(0.047)	(0.048)	(0.039)	(0.040)	(0.038)	(0.040)
Clusters	80	101	122	69	89	113	137	79
Observations	4329	5570	6648	3802	8891	11215	13589	7948
Bandwidth	750	1000	1250	665	750	1000	1250	682
Violent Crime Clearance Rate	-0.235*	-0.186*	-0.106	-0.180*	0.032	0.067	0.118**	0.084
violent Crime Clearance Rate	(0.122)	(0.105)	(0.098)	(0.107)	(0.058)	(0.057)	(0.057)	(0.057)
Clusters	62	84	105	72	89	113	137	95
Observations	830	1039	1280	938	3036	3780	4407	3286
Bandwidth	750	1000	1250	850	750	1000	1250	802

Online Appendix Table 12: Effect on Crime and Clearance Rates, Robustness to using Locally Quadratic Regression

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to using locally quadratic regressions. It presents RD estimates on crime rates and clearance rates for pre-treatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally quadratic regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.

Sample		pre-tre	atment			post-tre	eatment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
L CL D	-0.055	-0.021	-0.181	-0.318	-0.384	-0.428	-0.540*	-0.435
Log Crime Rate	(0.291)	(0.265)	(0.260)	(0.260)	(0.310)	(0.291)	(0.299)	(0.293)
Clusters	80	101	123	128	89	113	137	114
Observations	5811	7413	8929	9195	8906	11242	13623	11283
Bandwidth	750	1000	1250	1336	750	1000	1250	1028
Log Property Crime Rate	-0.057	-0.036	-0.181	-0.084	-0.410	-0.451*	-0.562**	-0.562**
Log I Toperty Chine Rate	(0.256)	(0.236)	(0.238)	(0.232)	(0.280)	(0.269)	(0.280)	(0.280)
Clusters	80	101	123	107	89	113	137	137
Observations	5715	7302	8790	7672	8891	11215	13589	13589
Bandwidth	750	1000	1250	1064	750	1000	1250	1255
Log Violent Crime Rate	0.734	0.635*	0.477	0.657*	0.457	0.342	0.321	0.338
Log violent Crime Kate	(0.479)	(0.386)	(0.349)	(0.396)	(0.513)	(0.485)	(0.467)	(0.484)
Clusters	65	88	109	85	89	113	137	114
Observations	950	1171	1454	1140	3036	3780	4407	3788
Bandwidth	750	1000	1250	979	750	1000	1250	1024
Property Crime Clearance Rate	0.047	0.038	0.046	0.035	0.030	0.008	0.009	-0.002
Toperty Chine Clearance Rate	(0.052)	(0.049)	(0.051)	(0.048)	(0.040)	(0.039)	(0.043)	(0.039)
Clusters	80	101	122	96	89	113	137	108
Observations	4329	5570	6648	5207	8891	11215	13589	10706
Bandwidth	750	1000	1250	927	750	1000	1250	956
Violent Crime Clearance Rate	-0.228*	-0.223*	-0.204*	-0.217*	0.054	0.056	0.038	0.057
violent Chine Clearance Nate	(0.138)	(0.121)	(0.113)	(0.123)	(0.065)	(0.059)	(0.062)	(0.058)
Clusters	62	84	105	80	89	113	137	115
Observations	830	1039	1280	1006	3036	3780	4407	3796
Bandwidth	750	1000	1250	930	750	1000	1250	1040

Online Appendix Table 13: Effect on Crime and Clearance Rates, Robustness to using Locally Cubic Regression

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to using locally cubic regressions. It presents RD estimates on crime rates and clearance rates for pre-treatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally cubic regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.

Sample		pre-tre	atment			post-trea	atment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	-0.268	-0.184	-0.032	-0.267	-0.464**	-0.403**	-0.340*	-0.511**
Log Crime Rate	(0.189)	(0.173)	(0.170)	(0.201)	(0.227)	(0.202)	(0.182)	(0.237)
Clusters	80	101	124	67	89	113	138	79
Observations	5845	7441	9071	4936	8907	11243	13743	7963
Bandwidth	750	1000	1250	642	750	1000	1250	686
Log Dronowly, Crime Date	-0.266	-0.173	-0.017	-0.064	-0.492**	-0.422**	-0.357**	-0.508**
Log Property Crime Rate	(0.176)	(0.163)	(0.161)	(0.205)	(0.215)	(0.192)	(0.174)	(0.208)
Clusters	80	101	124	59	89	113	138	95
Observations	5755	7334	8936	4188	8892	11216	13709	9515
Bandwidth	750	1000	1250	586	750	1000	1250	798
Lee Wielert Crime Dete	0.188	0.041	0.002	0.224	0.168	0.132	0.142	0.129
Log Violent Crime Rate	(0.302)	(0.286)	(0.263)	(0.313)	(0.316)	(0.268)	(0.247)	(0.294)
Clusters	76	97	118	56	89	113	138	101
Observations	1138	1383	1791	867	3216	3941	4682	3633
Bandwidth	750	1000	1250	579	750	1000	1250	854
Property Crime Clearance Rate	0.040	0.037	0.038	0.078	0.016	0.033	0.037	-0.004
Toperty Chine Clearance Kate	(0.043)	(0.040)	(0.038)	(0.048)	(0.036)	(0.034)	(0.032)	(0.039)
Clusters	80	101	123	45	89	113	138	47
Observations	4349	5586	6748	2453	8892	11216	13709	4829
Bandwidth	750	1000	1250	446	750	1000	1250	398
Violent Crime Clearance Rate	-0.096	-0.059	-0.074	-0.048	0.139**	0.176***	0.121**	0.096
violent Crime Clearance Rate	(0.106)	(0.095)	(0.088)	(0.112)	(0.062)	(0.063)	(0.062)	(0.067)
Clusters	73	94	115	52	89	113	138	54
Observations	976	1194	1514	718	3216	3941	4682	2088
Bandwidth	750	1000	1250	568	750	1000	1250	463

Online Appendix Table 14: Effect on Crime and Clearance Rates, Robustness to not Including State-month Fixed Effects

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustness to excluding the state-month fixed effects. It presents RD estimates on crime rates and clearance rates for pre-treatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses.

Sample		pre-tre	atment			post-tre	atment	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	-0.306	-0.197	-0.059	-0.235	-0.577***	-0.452**	-0.384**	-0.625***
Log Crime Rate	(0.196)	(0.168)	(0.163)	(0.227)	(0.222)	(0.187)	(0.167)	(0.233)
Clusters	80	101	123	62	89	113	137	76
Observations	5811	7413	8929	4437	8906	11242	13623	7730
Bandwidth	750	1000	1250	623	750	1000	1250	661
Log Property Crime Rate	-0.292	-0.182	-0.037	-0.114	-0.588***	-0.462**	-0.395**	-0.628***
Log I toperty Clinie Rate	(0.187)	(0.161)	(0.157)	(0.230)	(0.213)	(0.180)	(0.160)	(0.222)
Clusters	80	101	123	59	89	113	137	77
Observations	5715	7302	8790	4113	8891	11215	13589	7822
Bandwidth	750	1000	1250	583	750	1000	1250	666
Log Violent Crime Rate	0.136	0.022	0.056	0.128	0.091	0.092	0.115	0.099
Log violent Crime Rate	(0.339)	(0.290)	(0.252)	(0.354)	(0.395)	(0.320)	(0.291)	(0.406)
Clusters	65	88	109	59	89	113	137	79
Observations	950	1171	1454	858	3036	3780	4407	2750
Bandwidth	750	1000	1250	698	750	1000	1250	687
Property Crime Clearance Rate	0.030	0.025	0.030	0.043	0.015	0.028	0.029	0.007
Toperty ennie cleanance kate	(0.043)	(0.041)	(0.040)	(0.043)	(0.036)	(0.031)	(0.028)	(0.037)
Clusters	80	101	122	55	89	113	137	76
Observations	4329	5570	6648	2940	8891	11215	13589	7719
Bandwidth	750	1000	1250	546	750	1000	1250	662
Violent Crime Clearance Rate	-0.078	-0.058	-0.064	-0.114	0.111**	0.099**	0.088**	0.056
violent Chine Clearance Kale	(0.095)	(0.086)	(0.081)	(0.100)	(0.048)	(0.042)	(0.041)	(0.051)
Clusters	62	84	105	46	89	113	137	59
Observations	830	1039	1280	637	3036	3780	4407	2127
Bandwidth	750	1000	1250	615	750	1000	1250	542

Online Appendix Table 15: Effect on Crime and Clearance Rates, Robustness to More Flexible Running Variable

Notes: *** p<0.01, ** p<0.05, * p<0.1. The tables shows robustenss to allowing the running variable to vary by census and outcome year. It presents RD estimates on crime rates and clearance rates for pre-treatment years (1960 to 1969, columns 1 to 4) and post-treatment years (1970 to 1979, columns 5 to 8). Variation in treatment status is from the 1970 census experiment. Crime rates are crimes per 100,000 people and clearance rates are number of crimes cleared by arrest over total number of crimes. Variation in treatment status is from the 1970 census experiment. The coefficients are estimated using locally linear regression and a uniform kernel for four different bandwidths: 750, 1000, 1250 and an outcome and sample specific MSE-optimal bandwidth. Standard errors clustered at the municipality level are shown in parentheses. State-month fixed effects are included in all columns.

Online Appendix B - Municipal merit system legislation

Procedure followed to identify merit system mandates

This section documents the procedure followed to identify the legislation on municipal merit systems and choices made in the final definition of the sample. The procedure was conducted separately for two time periods because of different primary source availability. First, I performed a search until 1940. Second, I extended the legislative review from 1940 to 2000.

Legislation until 1940

- 1. I exclude states which according to the Civil Service Agencies census of 1940 either did not have municipal civil service boards or did not have municipal civil service boards with legal base in State statues or constitutions. This excludes 13 states.
- 2. For the remaining states, I search through legislative records (in particular Session Laws and Statutes on HeinOnLine) to identify the specifics of civil service reforms and use this information to classify the reform. The search is conducted as follows: I first identify any legislation introducing merit systems by searching all session laws 1900-1940 for keywords such as "civil service commission", "merit system", "board of police and fire commissioners". Once I identify the specific wording on the reform for the state, I proceed searching session laws with the appropriate wording. When the legislation changes over a few years (in particular, if the threshold is changed over a 1 to 3 years periods), I consider the final legislation. Utah and Wisconsin villages are the ones affected.
- 3. I classify whether:
 - The reform was introduced by the legislature but was city specific;
 - The reform imposed a mandate;
 - The reform took a population threshold form. If yes, I also classify whether the legislation directly imposes the reform for municipalities above a particular threshold or it imposes the reform for classes/types of municipalities that in turn are defined based on population thresholds;
 - The population thresholds were higher than 15,000, which suggests that they were targeted to specific cities (and also that there are not going to be cities around the discontinuity).

Legislation from 1940 to 1990

1. I take a snapshot of the legislation at three different points in time: 1940, 1978 and 1993. The information for 1940 is based on my previous 50 state survey; the information for 1978 and

1990 is based on Hill (1978, 1990).

- 2. To ensure that there is no state missing, if a state is not reported having a mandate for a municipal merit system in 1978 or 1993, I perform an additional check looking at state statutes. For each of these states:
 - I access the oldest statute available through the Historical Statutes on WestLaw (or 1990 or closest year to 1990 available) and/or the current statute and perform the following keyword searches in the statutory text:
 - (Board /s police) /p (municipal! or cit! or town!) % "state police"
 - "merit system" /p (municipal! or cit! or town!)
 - Also, I search through the Index of the statute and skim through the following entries to identify whether there is specific legislation on merit systems for cities and if so, what is the content of the legislation:
 - Municipalities;
 - Civil service;
 - Police.
- 3. For the states that are reported in 1940 to have legislation of the relevant form or to have a mandate for a merit system to be instituted in cities (not restricted to legislation for cities above certain population) in 1978 or 1993:
 - First, I identify the text of the legislation. I proceed as follows:
 - I use West Law to identify the wording of the legislation and references in the State Session Laws. This covers 1990 and current statutes. I mainly use the references in the secondary source.
 - For the states for which I cannot find a reference, I use the reference given in the secondary source and look up the historical state statutes around 1980 on microfiches (since these are non-searchable I only check the specific reference reported in the secondary source).
 - If I identify that at any of these points in time the legislation the form I am interested in I use Session Laws to get the details.

Final state sample selection

This identifies a set of states potentially in the sample. From these, I select the final set of states in the sample based on the following considerations separately for the main analysis and the historic census analysis (this is because they are based on different census experiments).

1. Historic census analysis (1900, 1910, 1920 and 1930 census experiments).

- Potential sample: Arkansas, Iowa, Montana, Ohio, Utah, West Virginia, Wisconsin cities.
- Final sample: Iowa, Montana, Ohio, West Virginia, Wisconsin cities.
 - Arkansas is excluded as there is no first stage in the 1930 census experiment.
 - Ohio is excluded as tenure is granted both to places above and below the threshold.
 - Utah is excluded as there is no first stage in the 1920 and 1930 census experiments (and there are no cities around the threshold).
- 2. Crime analysis
 - Potential sample: Alabama, Arizona, Illinois, Louisiana, Montana, Nebraska, Ohio, West Virginia, Wisconsin cities and Wisconsin villages.
 - Final sample: Arizona, Illinois, Louisiana, Montana (only for outcomes measured before 1975), Nebraska, Ohio, West Virginia, Wisconsin cities and Wisconsin villages.
 - Alabama is excluded as the legislation does not specify what is required for a city to institute a merit system and, in particular, it does not require the removal of the power to appoint law enforcement officers from the political authority of the city.
 - Ohio is excluded as tenure is granted both to places above and below the threshold.

Legislation for states included in the sample

Arizona

History of the reform

• Mandate for civil service merit system for municipal law enforcement officers introduced for municipalities 15,000+ which have a full-time police department of more than 15 men in 1969.¹ Current statutes include amendments post-2000 but are otherwise the same.

- Merit system council:
 - 5 members;
 - Appointed by the governing body of the city;
 - Overlapping 5 years terms;
 - No more than three members shall belong to the same political party. All members shall be persons having recognized knowledgeable interest in the merit principles of personnel administration. Members cannot be elected or appointed to public office.

¹More precisely, the 1969 act mandates the law enforcement merit system for all cities and towns, with the exception of cities and towns with population of less than 15,000 inhabitants or with a full-time police department of less than 15 men. According to UCRs cities at the discontinuity have more than 15 policemen.

- Provisions:
 - Duties of the merit system council:
 - * Classifying all positions in the police department and fixing standards and qualifications for classified positions;
 - * Providing a plan for selection, appointment, retention and separation or removal from service by resignation or dismissal of all classified law enforcement officers.²;
 - * Providing a plan for promotion of law enforcement officers (promotions should be based on competitive examinations);
 - * Hearing and reviewing appeals from any order of the department head in connection with suspension, demotion, or dismissal of a classified law enforcement officer.
 - Previous employees are grandfathered into the reform without examinations.
- Chief of police:
 - Whether the chief of police is covered by the provisions depends on the classification of the council.
- Additional notes:
 - Each municipality subject to the act can either institute its own council or use the services of the county merit system council.

- Merit system: Laws 1969, Ch. 102 and A.R.S. T. 38-1001 et seq.;
- Non-civil service appointments: A.R.S. T. 9-240 and A.R.S. T. 9-274.

Illinois

History of the reform

• Possibility to institute board of fire and police commissioners introduced for cities 7,000+ and 100,000- in 1903. Mandate for cities 15,000+ instituted in 1949. Threshold lowered to 13,000+ in 1951 and 5,000+ in 1957.

²Even though the act does not directly institute competitive examinations, in Taylor vs. McSwain (1939), as cited in Hamilton vs. City of Mesa (1995): "A merit system is defined to include the following: the appointment of all employees who come under the system is made on the basis, and as the result, of open and competitive examinations arranged to determine which of the applicants for the position is best fitted to perform its duties, regardless of political affiliations, or past record, and that once an appointment is made, removal from the position should be based only on unfitness for the work for one reason or another, and not upon personal considerations."

- Board of Fire and Police Commissioners:
 - 3 members;
 - Appointed by the mayor of the city with the consent of the city council or by the president of the village or incorporated town with the consent of the board of trustees;
 - Overlapping 3 years terms;
 - No nominations by the mayor or president in the last 30 days of his mandate;
 - One shall be a representative citizen of the employee class, one shall be a representative citizen of the employing class, one shall be a representative citizen not identified with either the employing of the employee class;
 - No more than two members of the board may belong to the same political party.
- Provisions:
 - Duties of the board:
 - * Appoint all officers and members of the department;
 - * Hold examinations.
 - All applications for a position in the police department are subject to an examination that is public, competitive and open to all applicants. Appointments should be made in order of relative excellence as determined by the examination.
 - Promotions should be made from members of the department through a competitive examination. Promotions should be from the top three applications.
 - Dismissals are only permitted for just cause and after an opportunity to appeal has been granted.
 - Previous employees are grandfathered into the reform without examinations.
 - Publicity is required for all rules made by the board and examinations.
- Chief of police:
 - By default the commission also nominates the chief (but can be changed by ordinance).
- Other notes:
 - In municipalities not under the act, the power to appoint a city police officer is vested in the mayor with the approval of the council. Policemen can be discharged with or without cause.

- Merit system: Laws 1961, p. 576, § 10-2.1 et seq. and 65 ILCS 5/10-2.1-1 formerly cited as IL ST CH 24 § 10-2.1-1;
- Non-civil service appointments: 8 Ill. Law and Prac. Cities, Villages, Etc. § 139.

Iowa

History of the reform

• Mandate to institute a board of fire and police commissioners for cities of the first class introduced in 1907. Threshold lowered in 1909. Mandate to introduce a board of fire and police commissioners introduced for all cities 8,000+ with a paid fire or police department in 1917.

- Civil Service Commission:
 - 3 members;
 - Appointed by the mayor of the city with the consent of the city council;
 - Overlapping 3 years terms;
 - The commissioners must be citizens of Iowa and residents of the city for more than five years next preceding their appointment, and shall serve without compensation. No person while on said commission, shall hold or be a candidate for any office of public trust.
- Provisions:
 - Duties of the board:
 - * Hold examinations yearly and when necessary for appointments and promotions.
 - Appointments are conditional upon probation. The ultimate power of appointment in in the fire and police chiefs with approval from city council.
 - Examinations are to be used to determine eligibility lists to be used for appointment.
 - Promotions should be made from members of the department.
 - Dismissals are only permitted for just cause and after an opportunity to appeal has been granted.
 - Previous employees are grandfathered into the reform without examinations (the only exception is the chief of police).
 - Employees are prohibited from campaign contributions.
 - Political activities (taking advantage of civil service position) are prohibited to employees.
- Chief of police:
 - The chief of police is not covered by the provisions. The appointment is made by the political authority but can only be made from the chief of police eligibility list.

- Other notes:
 - The current version of the act mandates using the federal census of 1980.
 - In municipalities not under the act, the mayor has the power to appoint policemen (though this has to be provided for by an ordinance of the city council).

- Merit system: I.C.A. T. IX, Subt. 4, Ch. 400;
- Non-civil service appointments: IA ST § 363.40 and 1973 WL 324501 (Iowa A.G.).

Louisiana

History of the reform

• Mandate for fire and police departments introduced for municipalities 50,000+ in 1920 and for cities 13,000+ in 44. Threshold lowered to 7,000 in 1964.

- Fire and Police Civil Service Board:
 - 3 members;
 - Appointed by governing body of the municipality;
 - Overlapping 3 years terms;
 - Members must be residents of the municipality and not be member of political organizations. One is nominated by the governing body upon its own nomination, one is appointed from a list of two nominees from an institution of higher education, one should be elected by the members of the police and fire department.
- Provisions:
 - Duties of the board:
 - * Create eligible lists;
 - * Conduct investigations in case of wrongdoing and make decisions on eventual disciplinary actions upon request of the appointing authority;
 - * Grant and administer appeals procedures.
 - Appointments and promotion are to be made upon certification based on competitive examinations. The appointing authority (check) makes the appointment from the list provided by the commission.

- Dismissals are permitted for just cause.
- Political activities are prohibited to employees.
- Chief of police:
 - The chief of police is not under civil service.
- Other notes:
 - In municipalities not under the act, the mayor is in control of the department and has the power to appoint and remove policemen. The current version of the code includes the possibility for municipalities to have an elected chief of police (in which case he makes suggestions for hiring and promotions). In the historic version of the code, the marshal his elected and has control over the policy of the department while the mayor is in charge of appointments.

- Merit system: Acts 1964, No. 282, § 1 and LSA-R.S. 33:2531 et seq.;
- Non-civil service appointments: LSA-R.S. 33:404 and General Statutes of the State of Louisiana 1939 2:5365 and 2:5422.

Montana

History of the reform

 Mandate for police commission introduced for all cities of the first class (10,000+) in 1907. Mandate extended to all cities of the second class (5,000+) in 1947 and to all cities in 1975. Civil service commission mandated for all municipalities under the municipal commissionmanager form of government in 1911 and 1917 respectively.

- Police Commission:
 - 3 members;
 - Appointed by mayor or city manager;
 - Overlapping 3 years terms;
 - Members shall have the qualifications required by law to hold a municipal officer therein.
- Provisions:

- Duties of the commission:
 - * Hold examinations and certify eligibility of applicants.
- The power of appointment is in the mayor but in cities where a police commission exists the mayor may appoint only individuals who have passed the examination provided by the commission.
- There is no inherent right to indefinite tenure given to policemen but policemen can be removed for cause (when they are remiss in their duties).
- Political activities (participating in political conventions and soliciting votes) are prohibited to employees.
- Chief of police:
 - The chief of police is covered by the provisions. The appointment is made by the political authority but can only be made from the chief of police eligibility list.
- Other notes:
 - Important for the classification: municipalities 2,500+ are cities, 1,000 to 2,500 can be either cities or towns and 1,000- are towns (in 1947).
 - In cities without a police board, the mayor (or corresponding governing authority) has power over the police department.

- Merit system: Laws 1907, Ch. 136 and Mont. Code Ann. 1947 § 11-1801 et seq. and Mont. Code Ann. 1978 § 7-32-4151.
- Non-civil service appointments: Mont. Code Ann. 1947 § 11-1801 et seq.

Nebraska

History of the reform

• Mandate for all members of fire departments of municipalities 5,000+ and 40,000- introduced in 1943. Expanded to police departments of the same municipalities in 1957.

- Civil Service Commission:
 - 3 members;
 - Appointed by mayor or authority who previously appointed the chief of police;

- Overlapping 6 years terms;
- No person shall be appointed a member of such commission who is not a citizen of the United States, a resident of such city for at least three years immediately preceding such appointment, and an elector of the county wherein such person resides.
- Provisions:
 - Duties of the commission:
 - * Hold tests and create eligible lists. Appointments should be made following the eligible list.
 - All appointments to and promotions in such departments shall be made solely on merit, efficiency, and fitness, which shall be ascertained by open competitive examination and impartial investigation.
 - Dismissals are only possible for just cause after an opportunity to appeal has been granted.
 - Previous employees are grandfathered into the reform without examinations.
- Chief of police:
 - The commission also nominates the chief.
- Other notes:
 - In cities which do not adopt the act, all police officers are appointed by the mayor and council and can be removed anytime by the mayor.
 - The threshold corresponds to the threshold classifying cities of the first class.

- Merit system: Laws 1957, LB 305, Neb.Rev.St. § 19-1825;
- Non-civil service appointments: Neb.Rev.St. § 19-1825.

West Virginia

History of the reform

• Before 1937 civil service for specific (generally large) cities, provided in charters approved by state legislation. In 1937, civil service mandated for paid police departments of municipalities with population 5,000+. In 1969, mandate only for cities of first and second class (10,000+). Cities that already have a civil service commissions are to keep it. Cities of the third class which do not have civil service already may introduce it with an election. Current legislation has the same form.

Content of the reform

- Civil Service Commission:
 - 3 members;
 - One appointed by the governor, one appointed by the local fraternal order of the police, one appointed by the local chamber of commerce or if there is not one by a business man's association;
 - Overlapping 5 years terms;
 - Commissioners should be residents of the city, no more than two of them shall be from the same political party and no commissioner should hold an office.
- Provisions:
 - Duties of the commission
 - * Make rules and regulations providing for examinations for positions in police departments and for appointments and promotions;
 - * Hold examinations and create eligible list;
 - * Hear and review appeals for dismissals or disciplinary actions.
 - Appointments are made by the appointing officer from three names certified by the civil service commission from the eligible list.
 - Promotions should be made internally whenever possible.
 - Dismissals are not acceptable for just cause ("which shall not be religious or political").
 - Political activities (taking advantage of civil service position) are prohibited to employees.
- Previous employees are grandfathered into the reform without examinations.
- Chief of police:
 - The chief is not covered by these provisions.
- Other notes:
 - In cities which are not under the provisions of the reform, the police department is under the authority of the mayor.

References

- Merit system: Acts 1937, c. 57, W. Va. Code, § 8-10-14;
- Non-civil service appointments: W. Va. Code, § 8-10-1.

Wisconsin, cities

History of the reform

• In 1897, civil service introduced for all cities of the second and third class. In 1909, extended to cities of the fourth class. Shortly after, in 1911, civil service mandated for cities of the fourth class with population 4,000+. Cities of the fourth class with population 4,000- may introduce a civil service board with an election (later: by ordinance). In 1933, introduced for cities under city manager form of government. The legislation survived in essentially the same form until today, with the exception of the inclusion of provisions providing for the possibility for contracting law enforcement services across local governments introduced starting from 1980.³

- Board of Police and Fire Commissioners:
 - 5 members;
 - Appointed by mayor;
 - Overlapping 5 years terms;
 - No more than 3 members of the board can belong to the same political party.
- Provisions:
 - The board of police and fire is the only mechanism for the appointment, removal or disciplining of policemen.
 - Duties of the commission:
 - * Appoints the chief;
 - * Approves all appointments and promotions (which have to be made from eligible lists provided by examinations);
 - * Recommends salary decreases to the common council;
 - * Suspend or dismiss members of the police force for cause;
 - * Receive charges and holds disciplinary hearings.
 - Under optional provisions the board also has the power to supervise the police force, prescribes rule for its management and contracts for police department purchases.
 - The chief appoints policemen subject to the board approval. Appointments are from eligibility lists. Promotions are to be made from within the department.

³The amendments allowing to contract protective services with a city, another village or the county does not matter for my design. If a local government unit were to contract out their law enforcement services they would not appear in the UCR data.

- Previous employees are grandfathered into the reform without examinations.
- Chief of police:
 - The chief of police is covered by the provisions and appointed by the board. The appointment is made by the political authority but can only be made from the chief of police eligibility list.
- Other notes:
 - In cities without a police board, the mayor has power over the police department.
 - In 1979 protection from political dismissals was granted to all law enforcement employees.
 - The legislation continues to today in a very similar form, with the exception of provisions allowing for out-contracting of police services starting from 1985.

- Merit system: W.S.A. 62.13;
- Non-civil service appointments: W.S.A. 62.09 § 8;
- Other: W.S.A. 164.

Wisconsin, villages

History of the reform

• Mandate for villages with population 5,000+ introduced in 1937. In 1941, threshold increased to 5,500. In 1979, the possibility to contract protective services with a city, another village or the county is introduced. In 1981, the possibility to create a joint police department with another city, village, town or county is introduced. If a village 5,500+ creates a joint police department it should appoint a joint board of police and fire (threshold lowered to 5,000 in 1981).

Content of the reform

• The content of the legislation is the same as the one for cities.

References

• Merit system and non-civil service appointments: W.S.A. 61.65.

Procedure followed to identify provisions implying policy discontinuity at the same threshold

To check whether there is overlapping legislation for the states in my sample:

- 1. I search through the oldest statute available on WestLaw using the threshold in the form appearing in the civil service legislation (e.g. for Iowa "eight thousand").
 - When the threshold is expressed as a number I perform the search excluding the number + dollars (e.g. for Iowa "eight thousand" % "eight thousand dollars").
 - If there is overlap with city classification, I search for the classification.
- 2. I search through State Session Laws using the threshold in the form appearing in the civil service legislation.

Online Appendix C - Uniform Crime Reports

Data cleaning

The source I use for the crime data are the Uniform Crime Reports Return A data files distributed by the FBI. As noted by Evans and Owens (2007), "the UCR data are essentially unedited by the FBI. As a result, the data requires thorough cleaning before use." In this Appendix, I discuss the steps I take to clean the data and, in particular, how I identify missing data.

The main issue with the data files is that a zero observation can be either a true zero or missing. As noted by Maltz (2006), zeros can mean that no crimes occurred in that month or that:

- 1. The department had not yet begun reporting data to the FBI;
- 2. The department reported its crime data through another agency;
- 3. The data were aggregated and reported on lower frequencies (e.g. quarterly, annualy);
- 4. The department did not report data for one month and compensated for the omission by reporting in the next month;
- 5. The department did not submit data for that month.

The original files contain indicators flagging these issues, but they are not always accurate. First, I use these indicators and set to missing all observations that are flagged to be indeed missing. Since I am interested in monthly data, I also set as missing observations that include information for more than one month. Second, I also include the following additional corrections:

- 1. I set a zero observation to missing for all months before the first non-zero non-missing report is submitted;
- 2. I set a zero observation to missing if the department only reports zeros for that year;
- 3. I set a zero observation to missing if the department only reports zeros or missing for that year;
- 4. I set a zero observation to missing if it is part of a spell of missing or zero data longer than three months.

As part of a robustness check, I show that my results are robust to an additional data cleaning procedure aimed at identifying outliers in the data following Evans and Owens (2007), Chalfin and McCrary (2018) and, in particular, Mello (2018). For each city, I fit the monthly time series of crimes and arrests using a local linear regression with bandwidth 12 for the 1960 to 1979 period. I then compute the absolute value of the percentage difference between the outcome and the predicted value for the same outcome. I flag as outliers observations that are above the 99th percentile of this absolute percentage deviation. Following Mello (2018), I add 1 to the violent crime and arrest time series to avoid dealing with zeros.